Matemáticamente nace de plantear la siguiente proporcionalidad entre dos segmentos y que dice así: "Buscar dos segmentos tales que el cociente entre el segmento mayor y el menor sea igual al cociente que resulta entre la suma de los dos segmentos y el mayor"
Sean los segmentos:
A: el mayor y B el menor, entoces planteando la ecuación es:A/B =(A+B)/A
Cuando se resuelve se llega a una ecuación de 2do. grado que para obtener la solución hay que aplicar la resolvente cuadrática.
El valor numérico de esta razón, que se simboliza normalmente con la letra griega "fi" es:
La Sección Áurea
Los griegos de la antigüedad clásica creían que la proporción conducía a la salud y a la belleza. En su libro Los Elementos (300 a. C.), Euclides demostró la proporción que Platón había denominado «la sección», y que más tarde se conocería como «sección áurea». Ésta constituía la base en la que se fundaba el arte y la arquitectura griegos; el diseño del Partenón de Atenas está basado en esta proporción. En la Edad Media, la sección áurea era considerada de origen divino: se creía que encarnaba la perfección de la creación divina. Los artistas del Renacimiento la empleaban como encarnación de la lógica divina. Jan Vermeer (1632-1675) la usó en Holanda; pero, años después, el interés por ella decreció hasta que, en 1920, Piet Mondrian (1872-1944) estructuró sus pinturas abstractas según las reglas de la sección áurea.
También conocido como la Divina Proporción, la Media Áurea o la Proporción Áurea, este ratio se encuentra con sorprendente frecuencia en las estructuras naturales así como en el arte y la arquitectura hechos por el hombre, en los que se considera agradable la proporción entre longitud y anchura de aproximadamente 1,618. Sus extrañas propiedades son la causa de que la Sección Áurea haya sido considerada históricamente como divina en sus composiciones e infinita en sus significados. Los antiguos griegos, por ejemplo, creyeron que el entendimiento de la proporción podría ayudar a acercarse a Dios: Dios «estaba» en el número.
Link: http://www.youtube.com/watch?v=j9e0auhmxnc&feature=player_embedded
Sin duda alguna. es cierto que la armonía se puede expresar mediante cifras, tanto en espacios pictóricos o arquitectónicos, como en el reino de la música o, cómo no, en la naturaleza. La armonía de la Sección Áurea o Divina Proporción se revela de forma natural en muchos lugares. En el cuerpo humano, los ventrículos del corazón recuperan su posición de partida en el punto del ciclo rítmico cardiaco equivalente a la Sección Áurea. El rostro humano incorpora este ratio a sus proporciones. Si se divide el grado de inclinación de una espiral de ADN o de la concha de un molusco por sus respectivos diámetros, se obtiene la Sección Áurea. Y si se mira la forma en que crecen las hojas de la rama de una planta, se puede ver que cada una crece en un ángulo diferente respecto a la de debajo. El ángulo más común entre hojas sucesivas está directamente relacionado con la Sección Áurea.
En arte y la arquitectura también se han usado con extraordinarios resultados las famosas propiedades armoniosas de a Sección Áurea. 1 las dimensiones de la Cámara Real de la Gan Pirámide se basan en la Sección Áurea; el arquitecto Le Corhusier diseño su sistema Modulor basándose en la utilización de la proporción áurea, el pintor Mondrian basó la mayoría de sus obras en la Sección Áurea: Leonardo la incluyó en muchas de sus pinturas y Claude Dehussy se sirvió de suspropiedades en la música. La Sección Áurea también surge en algunos lugares inverosímiles: los televisores de pantalla ancha, las postales, las tarjetas de crédito y las fotografías se ajustan por lo común a sus proporciones. Y se han llevado a cabo muchos experimentos para probar que las proporciones de los rostros de las top models se adecuan más estrechamente a la Sección Áurea que las del resto de la población. lo cual supuestamente explica por qué las encontramos bellas.
Luca Pacioli, un amigo de Leonardo da Vinci al que conoció mientras trabajaba en la corte de Ludovico Sforza, duque de Milán, escribió un tratado crucial sobre la Sección Áurea, titulado De divina proportione. En este libro, Pacioli intenta explicar el significado de la Divina Proporción de una forma lógica y científica, aunque lo que él creía era que su esquiva cualidad reflejaba el misterio de Dios. Esta y otras obras de Pacioli parece que influyeron profundamente a Leonardo, y ambos se convirtieron en amigos inquebrantables, trabajando incluso juntos sobre problemas matemáticos. El uso de la Sección Áurea es evidente en las obras principales de Leonardo, quien mostró durante mucho tiempo un gran interés por las matemáticas del arte y de la naturaleza. Como el brillante Pitágoras antes que él, Leonardo hizo un estudio en profundidad de la figura humana, demostrando que todas las partes fundamentales guardaban relación con la Sección Áurea. Se ha dicho que la gran pintura inacabada de Leonardo, San Jerónimo, que muestra al santo con un león a sus pies, fue pintada en un intencionado estilo para asegurarse de que un rectángulo dorado (véase entrada) encajara perfectamente alrededor de la figura central. Dada la afición de Leonardo por la «geometría recreativa», esto parece una suposición razonable También el rostro de la Mona Lisa encierra un rectángulo dorado pertecto.
Después de Leonardo, artistas como Ralaei y Miguel ángel hicieron un eran uso de la Sección Áurea para construir sus obras. La impresionante escultura de Miguel Ángel El David se ajusta en varios sentidos a la Sección Áurea, desde la situación del ombligo con respecto a la altura, hasta la colocación de las articulaciones de los dedos.
Los constructores de las iglesias medievales y góticas y de las catedrales europeas también erigieron estas asombrosas estructuras para adaptarse a la Sección Aurea. En este sentido, Dios realmente estaba en los números.
La Secuencia de Fibonacci
En el suelo del lugar donde se encuentra el cuerpo de Jacques Sauniére al comienzo del libro hay escritos algunos números. Sophie, su nieta, reconoce la secuencia numérica y la interpreta como una señal de su abuelo, aunque lleva su tiempo que emerja su completa significación. Una vez que ella tiene la llave de la caja de depósitos del banco y comprende que necesita un número de cuenta para tener acceso a ella, las cifras se ordenan ascendentemente para darle la solución.
La secuencia de Fibonacci es una secuencia infinita de número que comienza por: 1, 1, 2, 3, 5,8,13..., en la que cada uno de ellos es la suma de los dos anteriores.
Así: 2=1+1, 3=2+1, 5=3+2, 13=8+5 . Para cualquier valor mayor que 3 contenido en la secuencia, la proporción entre cualesquiera dos números consecutivos es 1,618, o Sección Áurea.
La secuencia de Fibonacci se puede encontrar en la naturaleza, en la que la flor del girasol, por ejemplo, tiene veintiuna espirales que van en una dirección y treinta y cuatro que van en la otra; ambos son números consecutivos de Fibonacci. La parte externa de una piña piñonera tiene espirales que van en sentido de las manecillas del reloj y otras que lo hacen en sentido contrario, y la proporción entre el número de unas y otras espirales tiene valores secuenciales de Fibonacci. En las elegantes curvas de una concha de nautilus, cada nueva circunvolución completa cumplirá una proporción de 1: 1,618, si se compara con la distancia desde el centro de la espiral precedente.
Leonardo Fihonacci nació en Pisa. Italia, en 1170. Creció y fue educado en Bugia, norte de África (hoy llamada Bejaia, en Argelia), desde donde regresó a Pisa alrededor del año 1200. Fihonacci fue sin duda influido y posiblemente enseñado por matemáticos árabes durante este su periodo más formativo. Escribió muchos textos matemáticos e hizo algunos descubrimientos matemáticos significativos, lo que ayudó a que sus trabajos fueran muy populares en Italia y a que le prestara atención el Sacro Emperador Romano del momento Federico II. quien lo invito a su corte de Pisa. Fibonacci murió en 1250.
No hay comentarios.:
Publicar un comentario